

Кафедра технологии вяжущих веществ и бетонов

ТЕХНОЛОГИЯ БЕТОНА, СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ И КОНСТРУКЦИЙ

Методические указания к практическим занятиям и самостоятельной работе для обучающихся по направлению подготовки 08.03.01 Строительство

Составители: О.В. Александрова, Н.А. Гальцева, Б.И. Булгаков

© ФГБОУ ВО «НИУ МГСУ», 2020

Москва Издательство МИСИ – МГСУ 2020 Pецензент — кандидат технических наук M.E. Kаdдo, доцент кафедры строительных материалов и материаловедения НИУ МГСУ

Тамительных изделий и конструкций [Электронный ресурс]: методические указания к практическим занятиям и самостоятельной работе для обучающихся по направлению подготовки 08.03.01 Строительство / сост.: О.В. Александрова, Н.А. Гальцева, Б.И. Булгаков; Министерство науки и высшего образования Российской Федерации, Национальный исследовательский Московский государственный строительный университет, кафедра технологии вяжущих веществ и бетонов. — Электрон. дан. и прогр. (1,2 Мб). — Москва: Издательство МИСИ – МГСУ, 2020. — Режим доступа: http://lib.mgsu.ru/ — Загл. с титул. экрана.

В методических указаниях рассмотрены основные методы расчета технологических линий и оборудования для производства изделий из железобетона.

Для обучающихся по направлению подготовки 08.03.01 Строительство, профиль «Производство и применение строительных материалов, изделий и конструкций».

Учебное электронное издание

Редактор H.A. Котова Корректор A.C. Орлова Верстка и дизайн титульного экрана $\mathcal{J}.\mathcal{J}.$ Разумного

Для создания электронного издания использовано: Microsoft Word 2010, Adobe InDesign CS6, ПО Adobe Acrobat

Подписано к использованию 25.08.2020. Объем данных 1,2 Мб.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский Московский государственный строительный университет». 129337, Москва, Ярославское ш., 26.

Издательство МИСИ – МГСУ. Тел.: (495) 287-49-14, доб. 14-23, (499) 183-91-90, (499) 183-97-95. E-mail: ric@mgsu.ru, rio@mgsu.ru.

СОДЕРЖАНИЕ

1. РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ТЕХНОЛОГИЧЕСКИХ ЛИНИЙ И УСТАНОВОК	5
Практическое занятие 1. Расчет стендов	5
Практическое занятие 2. Расчет производительности кассетных установок	6
Практическое занятие 3. Расчет конвейерных линий	7
Практическое занятие 4. Расчет агрегатно-поточных линий	9
2. РАСЧЕТ И ПОДБОР ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ	10
Практическое занятие 5. Расчет бетоносмесительного отделения (цеха)	11
Практическое занятие 6. Технологический расчет камер тепловой обработки и расчет необходимого количества форм	12
Библиографический список	15
Приложения	16

1. РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ТЕХНОЛОГИЧЕСКИХ ЛИНИЙ И УСТАНОВОК

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 РАСЧЕТ СТЕНДОВ

При расчете стендов (длинных или коротких), стендовых силовых или стационарных опрокидывающихся форм необходимо вначале определить габаритные размеры стенда (формы) для каждого вида изделий и количество формовочных линий (стендов) в пролете цехового здания.

Годовая производительность стендовой технологической линии, Π , м 3 /год, определяется по формуле

$$\Pi = \frac{C \cdot V \cdot M}{T_1},$$

где C — годовой фонд рабочего времени основного технологического оборудования, сут.; V — объем одновременно формуемых изделий, м³; M — количество стендов (форм) в пролете; T_1 — длительность одного оборота стенда, сут.

Длительность оборота стендовой линии, Т, в часах, рассчитывается по формуле

$$T = T_{\Pi} + T_{H} + T_{a} + T_{\phi} + T_{TO},$$

где $T_{\rm II}$ — продолжительность подготовки стенда (распалубки, отпуска натяжения, разрезки арматуры и изделий, съема изделия со стенда, его чистки и смазки, установки оснастки), ч; $T_{\rm H}$ — продолжительность раскладки арматуры, ее распределения и натяжения до 50 % контролируемого напряжения, ч; $T_{\rm a}$ — продолжительность установки ненапрягаемой арматуры и закладных деталей, подготовки оснастки к бетонированию и натяжение арматуры до контролируемого напряжения, ч; $T_{\rm d}$ — продолжительность формования (укладки и уплотнения бетонной смеси), ч; $T_{\rm TO}$ — продолжительность выдержки и тепловой обработки, ч.

Коэффициент оборачиваемости стенда в сутки определяется по формуле

$$K_{o6} = \frac{24}{T}$$
.

Если рассматривается производство на коротких стендах, в стендовых силовых или опрокидывающихся формах, то производительность определяется для всего принятого пролета.

Средняя длительность одного оборота запроектированного стенда определяется по циклограмме всех ниток и полос стендов в проекте. Если период оборачиваемости стендов больше суток, то циклограмму необходимо строить на рабочую неделю. При подсчете продолжительности оборота стенда необходимо предусмотреть все поэлементные операции, не совмещаемые по времени: операции по чистке, смазке, сборке бортоснастки, установке и распределению арматуры и закладных деталей, предварительному натяжению, формованию, закрытию крышек стендов, тепловой обработке, раскрытию крышек, отпуску натяжения, расформовке и извлечению готовых изделий. Длительность каждой из этих операций берется из норм технологического проектирования при стендовом способе производства или опытных данных с учетом конкретных условий (прил. 1). Режимы тепловой обработки приведены в прил. 3 и 4.

Исходя из необходимого годового объема производства цеха по видам изделий и производительности стенда, определяется количество стендов $K_{\rm ct}$ или силовых форм путем деления общего объема производства $\Pi_{\rm ofill}$ на годовую производительность стенда Π :

$$K_{cT} = \frac{\Pi_{o \delta III}}{\Pi}$$
.

Пример компоновки стендовых линий приведен на рис. 2.1 прил. 2.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 2 РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ КАССЕТНЫХ УСТАНОВОК

Технология производства изделий в вертикальных кассетных установках является разновидностью стендовой технологии. Годовая производительность P, м 3 /год, кассетной установки определяется по формуле

$$P = V \cdot K_{oo} \cdot C \cdot K_{\kappa}$$

где V— суммарный объем изделий при одновременной загрузке всех рабочих отсеков кассеты, ${\rm m}^3$; ${\rm K}_{\rm o6}$ — среднее число оборотов кассетной установки в сутки; C— годовой фонд рабочего времени, сут.; ${\rm K}_{\rm K}$ — коэффициент заполнения рабочих отсеков кассеты бетоном (выбирается по «нормам технологического проектирования предприятий сборных железобетонных изделий с кассетным способом производства» и должен быть не менее 0,9).

Средние данные о продолжительности отдельных операций (кроме тепловой обработки) приведены в табл. 1.

Tаблица 1 Продолжительность операций в кассетных установках

Операция	Продолжительность, ч
Очистка-смазка	0,6
Установка арматуры и закладных деталей, сборка кассеты	1,5
Укладка бетонной смеси	1,0
Распалубка	0,92

Продолжительность тепловой обработки может меняться в зависимости от толщины изготавливаемых изделий и принятой технологии тепловой обработки (одно- либо двухстадийной (прил. 6 и 7)). Длительность одного цикла работы кассетной установки $T_{\rm ц}$, ч, складывается из затрат времени на отдельные операции (прил. 1) и определяется по формуле

$$T_{\mathbf{I}\mathbf{I}} = T_{\mathbf{I}\mathbf{I}} + T_{\mathbf{\varphi}} + T_{\mathbf{TO}} + t_{0},$$

где $T_{\rm n}$ — продолжительность распалубки изделий, чистки и смазки отсеков, ч; $T_{\rm \phi}$ — продолжительность укладки и уплотнения бетонной смеси, ч; $T_{\rm ro}$ — продолжительность выдержки и тепловой обработки изделий, ч; t_0 — время на неучтенные операции, ч.

Суточный съем продукции, получаемой в одной кассетной установке $V_{\rm c}$, м 3 , рассчитывается по формуле

$$V_{\rm c} = V \cdot n \cdot K_{\rm of}$$

где V — объем одного средневзвешенного изделия, м 3 ; n — число одновременно формуемых изделий; K_{ob} — среднее число оборотов кассетной установки в сутки, определяемое по формуле

$$K_{oo} = \frac{24}{T_{II}}.$$

При двухсменной работе формовочного цеха оборачиваемость кассетной установки будет меньше, хотя продолжительность производственного цикла останется той же, что и при трехсменной работе. В этом случае средняя оборачиваемость кассетной установки определяется по циклограмме работы кассетных установок.

Пример компоновки кассетных линий приведен на рис. 2.2 прил. 2.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 3 РАСЧЕТ КОНВЕЙЕРНЫХ ЛИНИЙ

Годовая производительность конвейерной линии шагового действия Π с пакетировщиком или туннельными камерами, м³/год, рассчитывается по формуле

$$\Pi = \frac{60 \cdot H \cdot C \cdot V}{T_{\rm p}},$$

где H — количество рабочих часов в сутки, ч; C — годовой фонд рабочего времени, сут.; V — средневзвешенный объем одного формуемого изделия, м³; $T_{\rm p}$ — ритм работы конвейера, мин. (прил. 8).

Количество форм-вагонеток на конвейерной линии определяется по формуле

$$N_{\text{форм}} = 1,05 \left[\left(\frac{60 T_{\text{o}}}{T_{\text{p}}} + 1 \right) + K_{\pi} + 1 \right],$$

где $T_{\rm o}$ — время тепловой обработки, ч (см. прил. 3, 5 и 7); $K_{\rm n}$ — количество постов на конвейере. Если рассматриваемая технологическая линия не специализированная и на ней выпускается несколько типоразмеров изделий, то годовая производительность линии определяется по средневзвешенному объему изделий и циклу их формования с учетом затрат на переналадку. Средневзвешенный объем одновременно формуемых изделий $V_{\rm cp}$, м³, определяется по формуле

$$V_{\rm cp} = \frac{V_1 \Phi_1 + V_2 \Phi_2 + \dots + V_i \Phi_i}{\Phi_1 + \Phi_2 + \dots + \Phi_i},$$

где V_1, V_2, V_i — объем 1-го, 2-го и i-го изделия соответственно, м³; Φ_I, Φ_2, Φ_i — количество формовок в год 1-го, 2-го и i-го изделия соответственно.

Число постов конвейерной линии определяется для каждой технологической операции по формуле

$$K_{\text{no}} = \frac{T_{\text{cp}_i} \quad K_{\text{H}_i}}{T_{\text{K}} - T_{\text{nt}}},$$

где $T_{\text{ср}_i}$ — средняя продолжительность технологических операций на рассматриваемом участке линии, мин.; $T_{\text{к}}$ — продолжительность пребывания форм-вагонеток на одном посту рассматриваемого участка конвейерной линии, мин., включая время их передвижения с поста на пост; $K_{\text{н}_i}$ — операционные коэффициенты неравномерности, принимаемые по табл. 2; $T_{\text{пт}}$ — время передвижения тележек с поста на пост (равно 1,5...3 мин.).

В табл. 2 в качестве примера приведены данные для расчета количества постов конвейерной линии по изготовлению наружных стеновых панелей.

Данные для расчета количества постов конвейерной линии при изготовлении наружных стеновых панелей

Технологическая операция	Уровень механизации и автоматизации*	Т _{срі} , мин.	K_{H_i}	$\mathbf{T}_{\mathrm{cp}_i}\cdot\mathbf{K}_{{}_{\mathrm{H}_i}},$ мин.
	Доформовочный участок			
Съемка вкладыша	M	2	1,25	2,5
Открывание бортов	ЧМ	4	1,35	5,4
Кантование и съем изделий	M	5	1,25	6,25
Закрывание бортов	ЧМ	5	1,35	6,75
Установка вкладышей	M	2	1	2
Смазка формы	ЧМ	2	1,2	2,4
Укладка керамической плитки	P	12	1,2	14,4
			Итого	39,7
	Участок формования			
Укладка растворной смеси	M	5	1,15	5,75
Укладка арматуры	P	8	1,2	9,6
Укладка бетонной смеси	M	12	1,25	15
Уплотнение бетонной смеси	M	2	1,25	2,5
Укладка бетонной смеси	M	8	1,25	10
Уплотнение бетонной смеси	M	6	1,25	7,5
Укладка растворной смеси	M	7	1,15	8,05
Разравнивание и уплотнение растворной смеси	М	10	1,15	11,5
			Итого	69,9
	Послеформовочный участок			
Затирка поверхности	M	8	1,15	9,2
Очистка формы от бетонной смеси	P	3	1,2	3,6
Технический контроль	P	3	1,2	3,6
			Итого	16,4

^{*}Условные обозначения операций: М — механизированные, Р — ручные, ЧМ — частично механизированные.

Годовая производительность Π , м³/год, вибропрокатного стана или конвейера непрерывного действия определяется по формуле

$$\Pi = K_{\mathsf{u}} \cdot \mathsf{G} \cdot h \cdot v \cdot C \cdot H,$$

где v — скорость движения формовочной ленты стана или форм-вагонеток на конвейере на участке формовки, м/ч.;

 $K_{\rm u}$ — коэффициент снижения производительности за счет разрыва между формами формуемых изделий, равный:

$$K_{H} = \frac{L}{L+D},$$

(здесь L — длина изделия, м; D — длина промежутка между изделиями или формами, м); б — ширина формуемого изделия, м; h — толщина формуемого изделия, м.

Примеры компоновки конвейерных линий приведены на рис. 2.3 и 2.4 прил. 2.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 4 РАСЧЕТ АГРЕГАТНО-ПОТОЧНЫХ ЛИНИЙ

Годовая производительность агрегатно-поточной линии Π , м³/год, рассчитывается по формуле

$$\Pi = \frac{60 \cdot H \cdot C \cdot V}{T_1},$$

где H — количество рабочих часов в сутки; C — годовой фонд рабочего времени, сут.; V — объем одновременно формуемых изделий, м³; T_1 — цикл формования, мин. (см. прил. 1).

По той же формуле рассчитывается производительность линий по производству мелкоштучных изделий.

Необходимое количество формовочных линий рассчитывается по формуле

$$K_{\pi} = \frac{\Pi_{\text{год}}}{\Pi},$$

где $\Pi_{\text{год}}$ — заданный годовой объем производства цеха, м³/год.

Количество форм для агрегатно-поточной линии определяется по формуле

$$\Phi = \frac{1,05 \cdot 60 \cdot H\left(T_0 + \frac{T_1}{60} + 0,75\right)}{24 T_1},$$

где T_0 — время тепловой обработки, ч, (см. прил. 3, 5 и 7).

Расчет полуконвейерных линий выполняется аналогично.

Примеры компоновки агрегатно-поточных и полуконвейерных линий приведены, соответственно, на рис. 2.5 и 2.6 прил. 2.

2. РАСЧЕТ И ПОДБОР ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

В данном разделе приводится только технологический расчет оборудования без каких-либо конструктивных расчетов отдельных узлов машин. Под технологическим расчетом оборудования понимается определение производительности машины (или установки) и числа машин (установок), необходимых для выполнения производственной программы по данному технологическому переделу.

При выборе оборудования следует учитывать также качественную характеристику сырья и требования, предъявляемые к конечному продукту после обработки сырья на данном агрегате или машине. Расчет оборудования рекомендуется производить в порядке установки отдельных машин в технологическом потоке от подачи сырья до выхода готовой продукции. Если цех объединяет несколько отделений, то расчет оборудования следует производить по отделениям. Такое условие не только упрощает расчеты, но и позволяет более логично произвести расчет оборудования, устанавливает взаимосвязь отдельных машин в выполнении технологических операций и в значительной степени исключает случаи пропуска какого-либо механизма.

В конце расчета необходимо привести краткую техническую характеристику каждой машины в соответствии с паспортными данными.

При расчетах и выборе типов оборудования следует ориентироваться на машины отечественного производства.

Допускается установка машин нестандартных типов или заграничного изготовления.

Общая формула для технологического расчета оборудования:

$$\Pi_{\scriptscriptstyle M} = \frac{\Pi_{\scriptscriptstyle T}}{\Pi_{\scriptscriptstyle \Pi} \cdot K_{\scriptscriptstyle BH}},$$

где $\Pi_{\rm m}$ — количество машин, подлежащих установке; $\Pi_{\rm r}$ — требуемая часовая производительность по данному технологическому переделу, м³/ч; $\Pi_{\rm m}$ — часовая производительность машин выбранного типа, м³/ч; $K_{\rm вн}$ — нормативный коэффициент использования по времени (обычно принимается равным 0,8–0,9).

Если производительность минимального типоразмера серийно выпускаемых машин данного назначения значительно превосходит требуемую часовую производительность, расчетом определяется не количество машин, а проектный коэффициент использования оборудования, который подсчитывается по формуле

$$K_{_{\rm BB}} = \frac{\Pi_{_{\rm T}}}{\Pi_{_{\rm II}}}.$$

После выбора технологического оборудования составляется ведомость, где перечисляется основное технологическое, вспомогательное и транспортное оборудование, принятое для установки в цехе. Составление ведомости оборудования следует производить в том порядке, в котором устанавливаются машины в соответствии с технологическим потоком (табл. 3).

Таблица 3

Ведомость оборудования цеха

<u>№</u> п/п	Наименование и краткая характеристика оборудования	Единица измерения	Количество	Примечание
1	2	3	4	5

В графе «Примечание» указывается исполнение данной машины (левое или правое) или какие-либо другие параметры и приспособления, оговоренные в паспорте оборудования. Кроме того, может быть указан завод-изготовитель или поставщик оборудования.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 5 РАСЧЕТ БЕТОНОСМЕСИТЕЛЬНОГО ОТДЕЛЕНИЯ (ЦЕХА)

Расчет бетоносмесительного отделения (цеха) производится в следующей последовательности. 1. Определение часовой производительности бетоносмесительного цеха, Π_{u} , M^{3}/u :

$$\Pi_{\mathbf{q}} = \frac{\Pi \cdot 1, 4 \cdot 1, 2}{C \cdot H},$$

где П — годовая потребность в бетонной смеси, м 3 /год; 1,4 — коэффициент неравномерности работы; 1,2 — коэффициент запаса мощности; C — годовой фонд времени работы основного технологического оборудования, равный 245 или 294 суткам при, соответственно, пяти- или шестидневной рабочей неделе; H — число рабочих часов в сутки.

2. Определение часовой производительности смесительной машины, Π_{ym} , м³/ч:

$$\Pi_{\rm MM} = \mathbf{E} \cdot \mathbf{B} \cdot \mathbf{H}_3 \cdot 0,001,$$

где Б — вместимость смесительного барабана по загрузке, дм 3 , определяется по табл. 4; В — коэффициент выхода бетонной смеси, определяется по табл. 5; \mathbf{H}_3 — число замесов, определяется по табл. 6.

3. Определение требуемого количества бетоносмесительных машин:

$$K_{cm} = \frac{\Pi_{q}}{\Pi_{q_{m}}}.$$

Таблица 4

Вместимость смесителя по загрузке, дм³

Смеситель								
Гравитационный					Принудитель	ного действия	I	
СБ-101	СБ-30Б	СБ-16Б	СБ-10В	СБ-103	СБ-80	СБ-35	СБ-79	СБ-138
100	250	500	1200	3000	250	550	750	1500

Таблица 5

Значения коэффициента выхода бетонных смесей

Бетонные смеси	Коэффициент выхода
Тяжелые и легкие для конструкционного бетона	0,67
Легкие для теплоизоляционного бетона	0,75
Растворные смеси	0,8

Таблица 6

Рекомендуемое число замесов в зависимости от вида бетонной смеси и типа смесителя

Показатели	Число замесов
Бетонные смеси на плотных заполнителях, приготовленные в бетоносмесителях:	1
принудительного действия	30
гравитационных	2530
Бетонные смеси на пористых заполнителях для бетонов средней плотности, кг/м ³ :	•
более 1700	20
14001700	17
10001400	15
менее 1000	13

Практическое занятие 6 Технологический расчет камер тепловой обработки и расчет необходимого количества форм

На заводах сборного железобетона для тепловой обработки изделий применяются камеры цикличного и непрерывного действия.

Цикличный способ производства. Пропарочные камеры ямного типа применяются при агрегатно-поточном способе производства. Ямные камеры не являются стандартным оборудованием, и поэтому их габаритные размеры и количество подбираются и рассчитываются отдельно для каждого конкретного случая. Желательно, чтобы в одном пролете цеха все камеры были взаимозаменяемы и имели одинаковые размеры.

При назначении размеров камеры исходят из того, что глубина камеры, как правило, не должна быть больше 4,0 м во избежание значительных температурных перепадов по высоте. Необходимо учитывать, что в ямных камерах формы с изделиями устанавливаются одна на другую в 4–6 ярусов. Между формами, чтобы не портилась открытая верхняя поверхность изделия и обеспечивался доступ теплоносителя, устанавливаются прокладки толщиной 5...7 см. Таким образом, общая высота камеры $H_{\rm K}$, м, будет равна:

$$H_{\kappa} = [n \cdot h + 20 + (n-1) \cdot K]0,01,$$

где n — количество форм в камере, шт.; h — высота формы, см; K — толщина прокладок между формами, см; 20 — общая высота зазоров между днищем нижней формы и полом камеры и верхней формы и крышкой камеры, см.

Длина и ширина камеры определяются, исходя из общей длины и ширины изделия с учетом габаритных размеров формы, а также зазора между торцами и бортами формы и стенками камеры, которые принимаются от 10 до 15 см.

Если изделия в камере устанавливаются в плане в два или три ряда, то учитываются зазоры между рядами. Обычно размеры камеры рассчитываются на общий объем изделий $18...20 \text{ м}^3$.

Коэффициент использования объема камер для крупноразмерных изделий в среднем в пределах 0,3...0,4. Зная размеры и объем изделий, подвергаемых тепловой обработке при оптимальной загрузке камеры за один цикл ее работы, легко определить годовую производительность камеры, измеряемую в кубических метрах готовых изделий.

Годовая производительность пропарочной камеры, Π_{κ} , м³/год, определяется по формуле

$$\Pi_{\mathrm{K}} = \frac{T_{\mathrm{\varphi}} \cdot V_{\mathrm{K}} \cdot K_{\mathrm{HCH}}}{T_{\mathrm{K}}},$$

где T_{ϕ} — годовой фонд времени работы камер, ч; T_{κ} — средняя продолжительность оборота камеры, ч; $K_{\text{исп}}$ — коэффициент использования объема камеры, равный

$$K_{\text{исп}} = \frac{V_{\text{изд}}}{V_{\text{K}}},$$

здесь $V_{\rm изд}$ — объем пропариваемых изделий, м³; $V_{\rm K}$ — объем пропарочной камеры, м³, вычисляемый по формуле

$$V_{\kappa} = L_{\kappa} \cdot B_{\kappa} \cdot H_{\kappa}$$

где L_{κ} — длина камеры, м; B_{κ} — ширина камеры, м; H_{κ} — высота камеры, м.

Средняя продолжительность оборота камеры $T_{\rm K}$ складывается из времени на загрузку $t_{\rm 3}$, разгрузку $t_{\rm p}$, подогрев изделий $t_{\rm n}$, изотермический прогрев $t_{\rm u}$ и охлаждение изделий $t_{\rm ox}$:

$$T_{\rm K} = t_3 + t_{\rm p} + t_{\rm II} + t_{\rm W} + t_{\rm ox}.$$

Время загрузки камеры определяется при загрузке:

- с одного поста $t_3 = T_1 \cdot m$;
- с двух постов $t_3 = T_1 \cdot m/2$,

где T_1 — цикл формования, мин.; m — количество форм, размещаемых в камере.

Необходимое количество ямных камер определяется по формуле

$$M = \frac{\Pi_{\Gamma}}{\Pi_{\kappa}},$$

где $\Pi_{\rm r}$ — заданная годовая производительность линии (цеха), м³ изделий в год.

Полученное при расчете число камер можно увеличить на 1–2 камеры, учитывая возможность неритмичной работы цеха, а также необходимость периодической остановки камер для чистки и ремонта.

Непрерывный способ производства. При тепловой обработке изделий в агрегатах непрерывного действия используются щелевые, туннельные и вертикальные камеры, а также пакеты пропаривания с непрерывным перемещением в них форм. Расчет потребности в тепловых агрегатах и формах ведется исходя из средней продолжительности пребывания форм в тепловом агрегате.

Если при тепловой обработке в пакетировщике пар подключается одновременно ко всем формам, установленным в штабель, т.е. если тепловая обработка начинается после того, как в штабель установлена последняя форма, расчет потребности в формах и тепловых установках ведется так же, как при пропаривании в ямных камерах.

Средняя продолжительность $T_{\kappa \varphi}$ пребывания формы в тепловом агрегате непрерывного действия определяется по рис. 1.

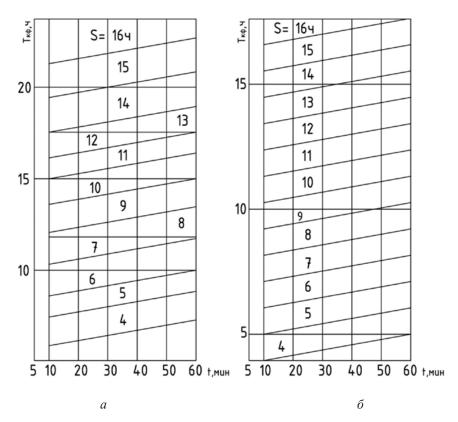


Рис. 1. Определение средней продолжительности пребывания формы в тепловом агрегате непрерывного действия при работе формовочного цеха: a — двухсменной; δ — трехсменной; S — время тепловой обработки и выдержки

За цикл загрузки теплового агрегата принимается цикл формования (цикл работы конвейера). Для определения продолжительности пребывания формы в камере по оси абсцисс откладывают величину равную циклу работы конвейера и восстанавливают перпендикуляр до пересечения с прямой продолжительности тепловлажностной обработки (ТВО) в часах, затем из этой точки пересечения проводят горизонтальную линию до пересечения с осью ординат, которая показывает длительность пребывания формы в камере.

Рекомендуемые расчетные режимы тепловой обработки изделий из тяжелых бетонов в пропарочных камерах или в стендовых силовых формах, предварительно-напряженных конструкций из тяжелых бетонов при изготовлении на стендах, изделий из легких бетонов, изделий в кассетах при расположении паровых отсеков через два рабочих отсека, а также при двухстадийной тепловой обработке приведены в прил. 3–7.

Количество щелевых (туннельных) камер рассчитывается по формуле

$$M = \frac{60 \cdot T_{\mathsf{K} \varphi}}{\mathsf{K}_{\mathsf{MC} \mathsf{\Pi}} \cdot \mathsf{K}_{\varphi} \cdot \mathsf{Y}_{\mathsf{g}} \cdot T_{\mathsf{p}}},$$

где $T_{\kappa \varphi}$ — время пребывания форм в камере, ч; $K_{\rm исп}$ — коэффициент использования объема камеры, $K_{\rm исп}$ = 0,9; K_{φ} — количество форм-вагонеток в камере; $H_{\rm s}$ — число ярусов в камере; $T_{\rm p}$ — ритм конвейера, мин.

Общее количество форм-вагонеток рассчитывается по формуле

$$\Phi = 1,0_{\mathrm{T}}(K_{_{\Pi}} + (K_{_{\Pi}} - 1) \cdot H_{_{\mathfrak{H}}} \cdot M + 2),$$

где К_п — количество постов на конвейере.

После окончания тепловой обработки в холодное время года (при температуре наружного воздуха ниже 0 °C) изделия должны выдерживаться в помещении: от 6 до 8 ч — из тяжелых бетонов, от 8 до 12 ч — из легких бетонов при толщине изделий, соответственно, до 200 и более 200 мм.

При определении размеров камер ТВО рассчитывают их длину, ширину и высоту. Длину щелевой (туннельной) камеры определяют по формуле

$$\mathbf{\Pi}_{\kappa} = \mathbf{\Pi}_{\phi} \cdot K_{\phi} + \mathbf{P}_{\phi}(K_{\phi} - 1) + 2\mathbf{P}_{\kappa},$$

где Д $_{\Phi}$ — длина формы-вагонетки, м; K_{Φ} — число форм, находящихся в камере:

$$K_{\Phi} = T_{\rm o} \cdot 60/T_{\rm p},$$

здесь $T_{\rm o}$ — продолжительность ТВО, ч; $T_{\rm p}$ — ритм конвейера, мин.;

 P_{φ} — расстояние между формами-вагонетками (от 0 до 0,5 м в зависимости от типа применяемого привода конвейерной линии); P_{κ} — расстояние между торцом камеры и бортом крайней формы, м, принимается равным 0,4...0,5 м.

Ширину щелевой (туннельной) камеры определяют по формуле

$$\coprod_{\kappa} = \coprod_{\phi} + 2P_{c} + 2B_{c},$$

где III_{Φ} — ширина формы-вагонетки, м; $\mathrm{P_c}$ — расстояние между формой-вагонеткой и внутренней стеной камеры, м, принимается равным 0,2...0,5 м; B_{c} — толщина наружной стенки камеры, м, определяемая теплотехническим расчетом (можно принимать в пределах 0,3...0,4 м).

Высоту камеры определяют по формуле

$$B_{K} = B_{1} + B_{2} + B_{3} + B_{II},$$

где B_1 — высота формы-вагонетки от головки рельса до верха поддона, м; B_2 — высота формы (изделия), м; B_3 — величина зазора от верха формы (изделия) до перекрытия камеры, м, принимается равной 0,2...0,3 м; B_n — толщина перекрытия камеры, м, определяется теплотехническим расчетом или принимается в пределах 0,3...0,4 м.

Примеры компоновки конвейерных, полуконвейерных и агрегатно-поточных линий приведены на рис. 2.3–2.6 прил. 2.

Перечень профессий рабочих, занятых в производстве железобетонных и бетонных изделий, и примерное число рабочих на технологической линии приведены в прил. 9.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Баженов Ю.М. Технология бетона, строительных изделий и конструкций / Ю.М. Баженов, Л.А. Алимов, В.В. Воронин. — Москва : Изд-во АСВ, 2016. — 172 с.

Баженов Ю.М. Технология бетона / Ю.М. Баженов. — Москва: Изд-во АСВ, 2011. — 528 с.

Баженов Ю.М. Технология сухих строительных смесей / Ю.М. Баженов, В.Ф. Коровяков, Г.А. Денисов. — Москва : Изд-во АСВ, 2015. — 112 с.

Проектирование предприятий по производству строительных материалов и изделий / Ю.М. Баженов и др. — Москва : Изд-во АСВ, 2005. — 472 с.

Чумаков Л.Д. Технология заполнителей бетона / Л.Д. Чумаков. — Москва : Изд-во АСВ, 2011. — 264 с.

Чумаков Л.Д. Нормирование и оценка качества строительных материалов и изделий / Л.Д. Чумаков. — Москва : Изд-во ACB, 2014. — 185 с.

Борщевский А.А. Механическое оборудование для производства строительных материалов и изделий / А.А. Борщевский, А.С. Ильин. — Москва : Альянс, 2009. — 366 с.

Георгиевский О.В. Правила выполнения архитектурно-строительных чертежей / О.В. Георгиевский. — Москва : АСТ, Астрель, 2007. — 104 с.

ГОСТ 17.0.0.01–76. Система стандартов в области охраны природы и улучшения использования природных ресурсов. Основные положения.

ГОСТ Р 21.1101–2013. Система проектной документации для строительства (СПДС). Основные требования к проектной и рабочей документации.

ГОСТ 21.401–88. Система проектной документации для строительства. Технология производства. Основные требования к рабочим чертежам.

ОНТП-07-85. Общесоюзные нормы технологического проектирования предприятий сборного железобетона.

Производство бетонных и железобетонных конструкций : справочник / под ред. Б.В. Гусева, А.И. Звездова, К.М. Королева. — Москва : Новый век, 1998. — 384 с.

СНиП 3.09.01-85. Производство сборных железобетонных конструкций и изделий.

СНиП 82-02–95. Федеральные (типовые) элементные нормы расхода цемента при изготовлении бетонных и железобетонных изделий и конструкций.

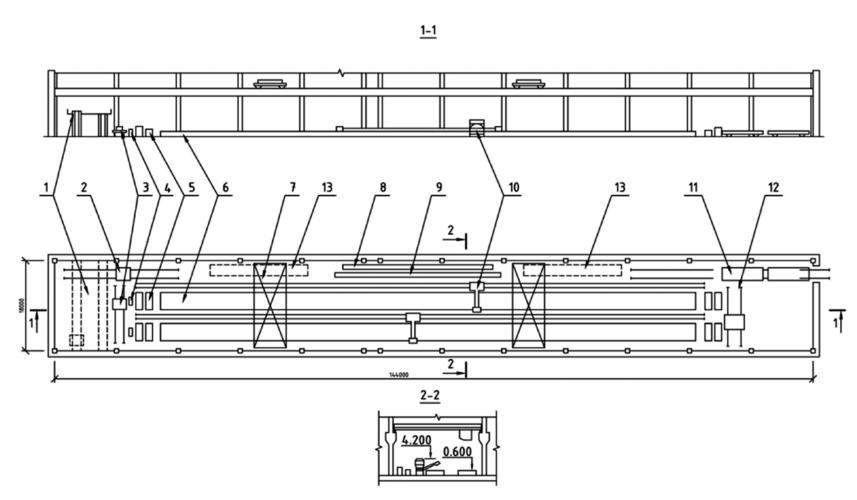
ПРИЛОЖЕНИЯ

Приложение 1

Нормы технологического проектирования

Формовочные цехи при агрегатно-поточном способе производства

Технологические показатели	Значение
Максимально допустимая продолжительность цикла формования, мин.:	
однослойных изделий на одном посту	15
то же, на автоматизированных установках	20
многослойных или офактуренных панелей на одном посту	30
Запас арматурных сеток и каркасов в формовочном цехе	на 3 ч
Масса арматурных сеток и каркасов, размещаемых на 1 м ² площади, т	0,3
Время электронагрева предварительно напрягаемой арматуры:	
проволочной, с, не более	20
стержневой, мин.	3
Максимальная температура нагрева арматуры, °С:	
стержневой	400
проволочной	350
Продолжительность остывания изделий в цехе в зимнее время после тепловой обработки, ч	4
Высота штабелирования изделий в цехе	до 2 м
Объем изделий на 1 м ² площади выдержки, м ³ :	
ребристые панели (в бетоне)	0,4
пустотные панели (в объеме изделий)	1,8
линейные элементы правильной формы	1,0
то же, неправильной формы	0,5
Масса металлических форм, приходящихся на 1 м ² площади складирования, т	0,7
Площадь для текущего ремонта форм при общей массе находящихся в работе форм, м ² :	
до 200 т	50
до 400 т	100
Отходы и потери бетонной смеси, не более, %	1,5
Расход смазки на 1 м ² развернутой поверхности металлических форм, кг	0,4


Формовочные цехи при стендовом способе производства

Технологические показатели	Значение			
Максимальное отклонение крайней проволоки от оси пакета на стендах, град.:				
пакетных	6			
протяжных	15			
Максимальный угол отклонения, град.:				
напряженного стержня от концевой диафрагмы к упору	3			
то же, прядевой арматуры	4			
Расчетный перепад между температурой упоров стенда, воспринимающих усилия от напряженной арматуры, и максимальной температурой бетонной смеси при тепловой обработке, °C:	60			
Оборачиваемость стендов длиной 100 м, сут., при изготовлении:				
панелей всех видов, не более	1,5			
линейных изделий	2			
подкрановых балок	3			
Продолжительность выдерживания изделий в цехе перед вывозкой на склад готовой продукции в зимнее время, сут.				
Нормы хранения изделий, м ³ , при выдержке на 1 м ² площади цеха:				
ребристых панелей	0,4			
линейных изделий	1,0			
Масса металлических форм, приходящихся на 1 м ² площади складирования, т	0,7			
Расход смазки на 1 м ² развернутой поверхности металлических форм, кг	0,4			
Запасы арматурных сеток и каркасов у стендов	на 3 ч			
Масса арматуры, размещаемой на 1 м ² площади, т	0,3			
Отходы и потери бетонной смеси, %, не более	1,5			
Продолжительность естественного твердения изделий на полигонах при температуре 15 °C (до снятия поддона), сут.	4			

Формовочные цехи при кассетном способе производства

Технологические показатели	Значение
Подвижность бетонной смеси при ее подаче (осадка конуса), см	1015
Коэффициент заполнения рабочих отсеков кассеты бетоном при выпуске комплекта изделий на дом с учетом применения раскладок, не менее	0,9
Количество отсеков в кассете для изготовления панелей стен или перекрытий, шт.	610
Продолжительность распалубки, включая разборку кассеты и извлечение изделий, мин., не более:	
6-отсечной	30
10-отсечной	50
Продолжительность подготовки кассеты (чистка и смазка, установка арматуры и закладных частей, сборка), не более, мин.:	
6-отсечной	60
10-отсечной	100
Продолжительность распалубки и подготовки пакетной формы (распалубка, чистка, смазка, установка арматуры и закладных частей, сборка), мин., не более	40
Продолжительность укладки и уплотнения бетонной смеси вибрированием, мин., не более:	
в 6-отсечной кассете	30
в 10-отсечной кассете	40
в пакетной форме	12
Потери бетонной смеси при ее подаче пневмотранспортом, ленточным конвейером или бункерами, %, не более	1,5
Запас скомплектованных арматурных сеток в формовочном пролете на все кассеты, комплект	1–2
Масса арматурных сеток и каркасов, размещаемых на 1 м ² площади, т	0,3
Продолжительность остывания изделия в цехе на стеллажах в зимнее время после тепловой обработки, ч	8
Процент изделий, подвергаемых устранению дефектов, %, не более	5
Продолжительность выдержки изделий до отделки, сут., не более	2
Объем изделий на 1 м ² занимаемой площади при остывании, выдержке в стеллажах, м3	1
Расход смазки на 1 м ² развернутой поверхности кассет или форм, кг	0,2
Площадь для текущего ремонта кассет на 1 пролет, м ²	100
Ориентировочная потребность в металле для металлических форм и кассет на 1 м ³ формуемых изделий (в плотном теле) при суточной оборачиваемости кассет или форм, кг:	
при 6-отсечных кассетах	4700
при 10-отсечных кассетах	4300
для пакетных форм лестничных маршей	2600
то же, для вентиляционных блоков	5500

Примеры компоновки оборудования

- Рис. 2.1. Линия по производству предварительно напряженных изделий на длинных стендах: 1 бетоновозная эстакада; 2 самоходная тележка с бадьей; 3 оборудование для протаскивания арматуры; 4 гидродомкрат малогабаритный; 5 упоры стенда; 6 формы стенда; 7 мостовой кран; 8 установка для стыковки и резки арматуры; 9 установка для упрочнения арматуры;
- 10 бетоноукладчик; 11 самоходная тележка для вывоза готовой продукции; 12 бухтодержатель передвижной; 13 место для хранения полуфабрикатов

Рис. 2.2. Линия по производству железобетонных изделий в кассетных установках:

1 — бетонопровод для пневмотранспортировки бетонной смеси; 2 — мостовой кран с траверсой; 3 — пост правки и резки арматуры;

4 — пост сборки арматурных каркасов; 5 — кассетная установка; 6 — рычажная система с приводными гидроцилиндрами для сборки и распалубки кассет;

7 — трубы для подачи пара в тепловые отсеки кассетной установки; 8 — циклогаситель давления сжатого воздуха;

9 — гибкий шланг для загрузки бетонной смеси в формовочные отсеки кассетной установки; 10 — пост ремонта и переоснастки кассетных форм;

11 — пост отделки изделий; 12 — кантователь; 13 — пост выдержки изделий; 14 — самоходная тележка для вывоза готовой продукции

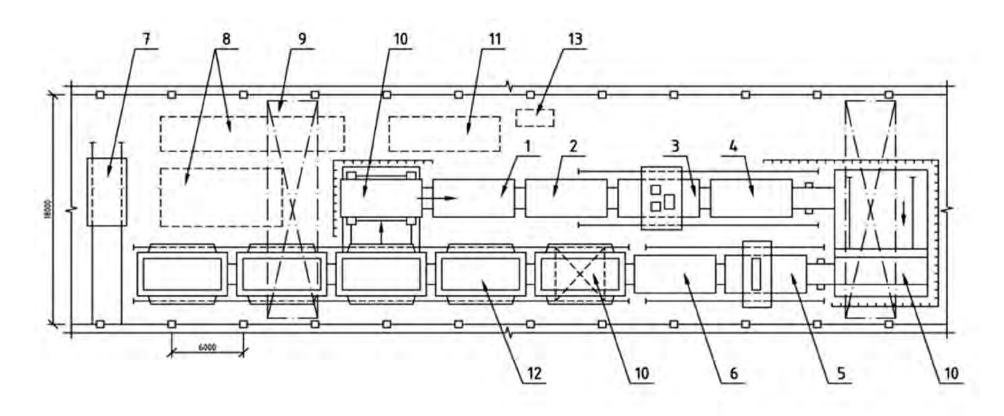


Рис. 2.3. Конвейерная линия с термопакетами по производству плит покрытий: 1 — пост распалубки, чистки, смазки и сборки форм; 2 — пост армирования; 3, 4 — посты укладки и уплотнения бетонной смеси; 5, 6 — посты заглаживания верхней поверхности изделий; 7 — самоходная тележка для вывоза готовых изделий; 8 — место складирования и выдержки готовых изделий; 9 — мостовой кран; 10 — передаточная тележка; 11 — место складирования арматуры; 12 — пакеты термоформ; 13 — пульт управления

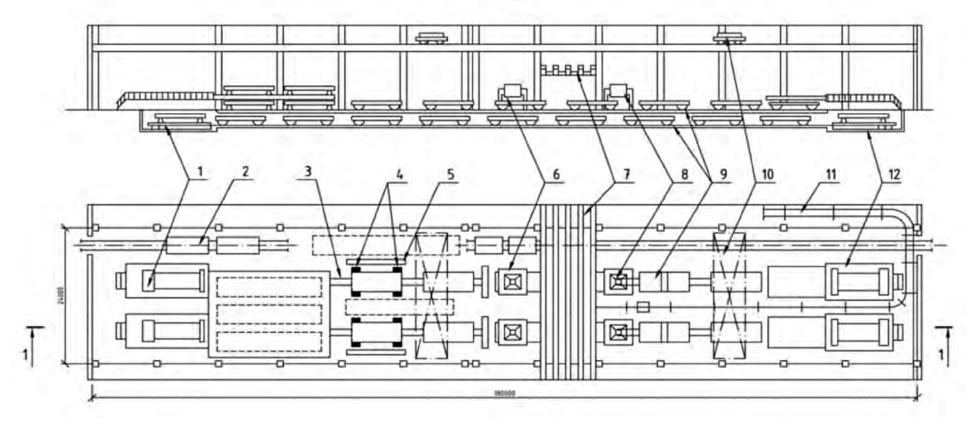
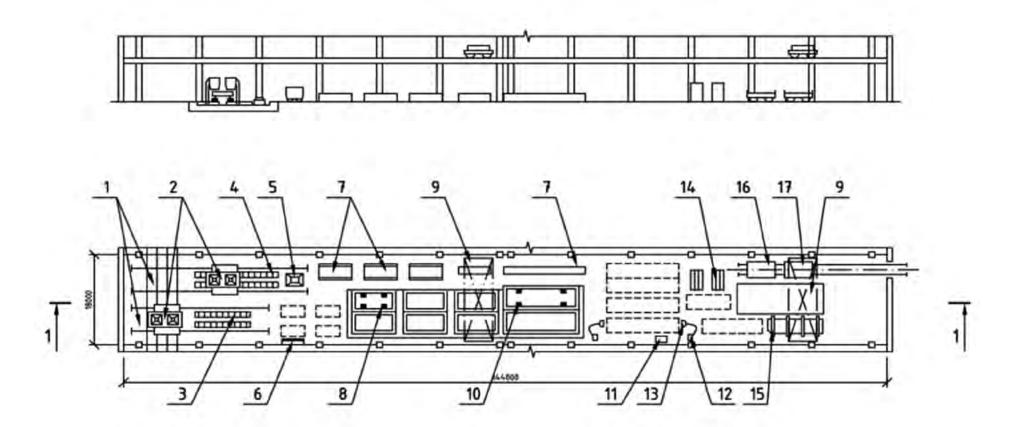



Рис. 2.4. Двухъярусный двухветьевой конвейер 1501: 1 — подъемник; 2 — самоходная тележка; 3 — штанговый толкатель; 4 — устройство для распалубки; 5 — электротермическая установка; 6 — бетоноукладчик; 7 — бетоновозная эстакада; 8 — раствороукладчик; 9 — формы-вагонетки; 10 — мостовой кран; 11 — подвесная транспортная линия; 12 — снижатель

- Рис 2.5. Агрегатно-поточная линия по производству плоских и линейных конструкций:
 1 бетоновозная эстакада; 2 бетоноукладчик; 3, 4 виброплощадки; 5 бадья; 6 установка для электротермического натяжения стержневой арматуры; 7 специализированные формы; 8, 10 пакетировщики форм; 9 кран мостовой; 11 трансформатор сварочный; 12 установка для натяжения арматуры; 13 металлоконструкция для подвески гидродомкратов; 14 стойка для установки изделий; 15 стенд для контроля и ремонта изделий; 16 тележка-прицеп; 17 — самоходная тележка для вывоза готовой продукции

Рис. 2.6. Полуконвейерная линия по производству напряженных и ненапряженных плит перекрытий (типовой проект 409-13-11): l — передаточная тележка; 2 — бетоновозная эстакада с ленточным транспортером; 3 — виброплощадка; 4 — бетоноукладчик; 5 — установка для электронагрева стержней; 6 — привод полуконвейерной линии; 7 — бункер для отходов; 8 — кран мостовой; 9 — пакетировщики для форм; 10 — пропарочные камеры; 11 — автоматический захват; 12 — кантователь; 13 — шпаклевочная машина; 14 — самоходная тележка для вывоза готовой продукции; 15 — склад форм; 16 — пост переоснастки форм; 17 — складирование оснастки; 18 — промежуточный склад готовых изделий

Рекомендуемые расчетные режимы тепловой обработки паром изделий из тяжелых бетонов в пропарочных камерах или в стендовых силовых формах

Толщина бетона в изделии, мм, до	Класс бетона	Расчетные режимы ТВО, ч, при изотермической выдержке 8090 °C	Продолжительность ТВО, ч
	В15 и менее	3,5 + 5,5 + 2	11
160	B20B30	3+4+2	9
	B35B50	3+3,5+2	8,5
	В15 и менее	3,5 + 6,5 + 2	12
300	B20B30	3 + 5 + 2	10
	B35B50	3+4,5+2	9,5
	В15 и менее	3,5 + 6,5 + 3	13
400 и более	B20B30	3,5 + 5 + 2	10,5
	B35B50	3+4,5+2	9,5

Примечания:

- 1. Настоящие режимы не предусматривают специально запланированное время предварительного выдерживания и распространяются на бетоны различной подвижности и жесткости, изготовляемые на портландцементах и шлакопортландцементах.
- 2. Приведенные в таблице режимы применимы для изготовления предварительно-напряженных изделий в передвижных или стендовых силовых формах и изделий с ненапрягаемой арматурой в передвижных или неподвижных формах.

Приложение 4

Рекомендуемые расчетные режимы тепловой обработки предварительно-напряженных конструкций из тяжелых бетонов при изготовлении на стендах

Режим тепловой обработки	Время, ч
Подъем температуры до 80 °C	7
Изотермический прогрев при 80 °C	6,5
Остывание	1,5
Всего	15

Примечания:

^{1.} Настоящие усредненные режимы даны для коротких и длинных стендов с упорами, вынесенными за пределы формы, предназначенных для изготовления любых предварительно-напряженных изделий в формах, не воспринимающих усилия от напряжения арматуры.

^{2.} Режимы тепловой обработки приняты при изготовлении изделий в помещениях или на полигонах при температуре воздуха более 10 °C.

Расчетные режимы тепловой обработки изделий из легких бетонов (отпускная прочность бетона 70...80 % проектной)

Класс бетона	Способ тепловой обработки	Толщина изделия, мм	Режим ТВО
B3,5B7,5	Сухой прогрев при 120150 °C	до 300 300 и более	2+5+2=9 2+6+2=10
D3,3D7,3	Прогрев в термоформах или в камерах «глухим паром» при температуре 9095 °C	до 300 300 и более	3+5+1=9 3+6+2=11
B3,5B15	Тепловлажностная обработка при температуре 8085 °C	до 200 200300 более 300	3+6+1=10 3+7+2=12 3+8+2=13
B20B30	То же	до 200 200300 более 300	2,5+4,5+1=8 $2,5+5+2=9,5$ $2,5+5,5+2=10$

Примечание. Отпускная прочность бетона после тепловой обработки достигает 70...80 % проектной прочности.

Приложение 6
Рекомендуемые расчетные режимы тепловой обработки паром изделий в кассетах при расположении паровых отсеков через два рабочих отсека

Толщина бетона в изделии, мм	Класс бетона	Расчетные режимы ТВО при температуре изотермического прогрева 8090 °C	Продолжительность ТВО, ч
До 100	B10	1 + 4 + 4	9
101160	B10	1 + 5 + 5	11
До 100	B15	1 + 3,5 + 3,5	8
101160	B15	1 + 4 + 4,5	9,5
До 100	B20	1 + 3 + 3	7
101200	B20	1+3,5+4,5	9

Примечание. При прогреве изделий с двух сторон общий цикл тепловой обработки уменьшается на 1 ч.

Приложение 7

Рекомендуемые расчетные режимы двухстадийной тепловой обработки изделий из тяжелых бетонов

Технологическая	Толщина бетона в изделии, мм	Класс бетона	Расчетные режимы тепловой обработки, ч, на стадии при температуре		Продолжительность тепловой обработки,
линия			1	2	ч
			8090 °C	6070 °C	
Агрегатно-поточная, конвейерная, стендовая	До 200	До В15	3,5 + 3 + 0,5	6	13
		Свыше В15	3+2,5+0,5	5	11
	201400	До В15	3,5 + 5 + 0,5	6	15
		Свыше В15	3+4+0,5	5	12,5
	До 100	B10	1+3,5+1,5	6	12
Кассетная	101200	B10	1+4+1,5	6	12,5
		B15	1+3+1,5	5	10,5

Примечания:

- 1. Первая и вторая стадии тепловой обработки производятся в камерах любых конструкций, определяемых технологическим способом организации производства.
 - 2. Интервал между первой и второй стадиями тепловой обработки должен быть не более 2 ч.
 - 3. После первой стадии тепловой обработки бетон достигает 30...40 % проектной прочности, после второй стадии 70 %.

Максимальная продолжительность ритма конвейерной технологической линии

Характеристика формуемых изделий	Ритм конвейера, мин., при объеме бетона одной формовки, м ³	
	До 3,5	3,55
Однослойные несложной конфигурации	12	22
То же, сложной конфигурации, группы изделий, формуемые в одной форме	18	28
Многослойные, офактуренные, крупногабаритные, сложной конфигурации	35	45

Приложение 9

Перечень профессий рабочих, занятых в производстве железобетонных и бетонных изделий

Профессии	Примерное число рабочих на технологической линии	
Автоклавщик	1 для каждого автоклава	
Антикоррозийщик	1–2	
Арматурщик	1–2	
Бетонщик	2–3	
Газосварщик	1	
Крановщик	по 1 на каждом кране	
Машинист бетоноукладчика	по 1 на каждом бетоноукладчике	
Машинист (оператор):		
бетонирующего комбайна	1	
виброплощадки	1	
вибропрокатного стана	1	
выпрессовщика	1	
кантователя	1	
навивочной машины	по 1 на каждой установке	
натяжной станции	1–2	
передаточного моста	по 1 на каждом мосту	
формовочной машины	1	
центрифуги	по 1–2 на каждой центрифуге	
Моторист электрокаров, самоходных и передаточных тележек	по 1 на каждой машине	
Опалубщик	1–2	
Офактурщик	1–2	
Подсобный рабочий	1–2	
Пропарщик	2–3	
Распиловщик изделий	1–2	
Такелажник	2	
Шлифовщик изделий	2–3	
Электросварщик	По числу постов сварки	